Access to Science, Engineering and Agriculture:

Mathematics 1
 MATH00030

Chapter 3 Solutions

1. (a) $x^{2}+4 x-5=\left[x^{2}+4 x\right]-5=\left[(x+2)^{2}-4\right]-5=(x+2)^{2}-9$.
(b) $x^{2}-8 x-20=\left[x^{2}-8 x\right]-20=\left[(x-4)^{2}-16\right]-20=(x-4)^{2}-36$.
(c) $x^{2}+5 x-6=\left[x^{2}+5 x\right]-6=\left[\left(x+\frac{5}{2}\right)^{2}-\frac{25}{4}\right]-6=\left(x+\frac{5}{2}\right)^{2}-\frac{49}{4}$.
(d) $x^{2}-7 x+2=\left[x^{2}-7 x\right]+2=\left[\left(x-\frac{7}{2}\right)^{2}-\frac{49}{4}\right]+2=\left(x-\frac{7}{2}\right)^{2}-\frac{41}{4}$.
(e) $2 x^{2}+3 x=2\left\{x^{2}+\frac{3}{2} x\right\}=2\left\{\left(x+\frac{3}{4}\right)^{2}-\frac{9}{16}\right\}=2\left(x+\frac{3}{4}\right)^{2}-\frac{9}{8}$.
(f)

$$
\begin{aligned}
-3 x^{2}+5 x-1 & =-3\left\{x^{2}-\frac{5}{3} x+\frac{1}{3}\right\} \\
& =-3\left\{\left[x^{2}-\frac{5}{3} x\right]+\frac{1}{3}\right\} \\
& =-3\left\{\left[\left(x-\frac{5}{6}\right)^{2}-\frac{25}{36}\right]+\frac{1}{3}\right\} \\
& =-3\left\{\left(x-\frac{5}{6}\right)^{2}-\frac{13}{36}\right\} \\
& =-3\left(x-\frac{5}{6}\right)^{2}+\frac{13}{12} .
\end{aligned}
$$

(g)

$$
\begin{aligned}
\frac{1}{3} x^{2}-\frac{1}{4} x-\frac{2}{3} & =\frac{1}{3}\left\{x^{2}-\frac{3}{4} x-2\right\} \\
& =\frac{1}{3}\left\{\left[x^{2}-\frac{3}{4} x\right]-2\right\} \\
& =\frac{1}{3}\left\{\left[\left(x-\frac{3}{8}\right)^{2}-\frac{9}{64}\right]-2\right\} \\
& =\frac{1}{3}\left\{\left(x-\frac{3}{8}\right)^{2}-\frac{137}{64}\right\} \\
& =\frac{1}{3}\left(x-\frac{3}{8}\right)^{2}-\frac{137}{192}
\end{aligned}
$$

(h)

$$
\begin{aligned}
-\frac{3}{4} x^{2}+2 x-\frac{1}{5} & =-\frac{3}{4}\left\{x^{2}-\frac{8}{3} x+\frac{4}{15}\right\} \\
& =-\frac{3}{4}\left\{\left[x^{2}-\frac{8}{3} x\right]+\frac{4}{15}\right\} \\
& =-\frac{3}{4}\left\{\left[\left(x-\frac{4}{3}\right)^{2}-\frac{16}{9}\right]+\frac{4}{15}\right\} \\
& =-\frac{3}{4}\left\{\left(x-\frac{4}{3}\right)^{2}-\frac{68}{45}\right\} \\
& =-\frac{3}{4}\left(x-\frac{4}{3}\right)^{2}+\frac{17}{15} .
\end{aligned}
$$

2. In each case we will start by rewriting the equation using the completed square form found in Question 1.
(a)

$$
\begin{aligned}
x^{2}+4 x-5=0 & \Rightarrow(x+2)^{2}-9=0 \\
& \Rightarrow(x+2)^{2}=9 \\
& \Rightarrow x+2= \pm 3 \\
& \Rightarrow x=-5 \text { or } x=1
\end{aligned}
$$

(b)

$$
\begin{aligned}
x^{2}-8 x-20=0 & \Rightarrow(x-4)^{2}-36=0 \\
& \Rightarrow(x-4)^{2}=36 \\
& \Rightarrow x-4= \pm 6 \\
& \Rightarrow x=-2 \text { or } x=10 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
x^{2}+5 x-6=0 & \Rightarrow\left(x+\frac{5}{2}\right)^{2}-\frac{49}{4}=0 \\
& \Rightarrow\left(x+\frac{5}{2}\right)^{2}=\frac{49}{4} \\
& \Rightarrow x+\frac{5}{2}= \pm \frac{7}{2} \\
& \Rightarrow x=-6 \text { or } x=1 .
\end{aligned}
$$

(d)

$$
\begin{aligned}
x^{2}-7 x+2=0 & \Rightarrow\left(x-\frac{7}{2}\right)^{2}-\frac{41}{4}=0 \\
& \Rightarrow\left(x-\frac{7}{2}\right)^{2}=\frac{41}{4} \\
& \Rightarrow x-\frac{7}{2}= \pm \frac{\sqrt{41}}{2} \\
& \Rightarrow x=\frac{7-\sqrt{41}}{2} \text { or } x=\frac{7+\sqrt{41}}{2}
\end{aligned}
$$

(e)

$$
\begin{aligned}
2 x^{2}+3 x=0 & \Rightarrow 2\left(x+\frac{3}{4}\right)^{2}-\frac{9}{8}=0 \\
& \Rightarrow 2\left(x+\frac{3}{4}\right)^{2}=\frac{9}{8} \\
& \Rightarrow\left(x+\frac{3}{4}\right)^{2}=\frac{9}{16} \\
& \Rightarrow x+\frac{3}{4}= \pm \frac{3}{4} \\
& \Rightarrow x=-\frac{3}{2} \text { or } x=0
\end{aligned}
$$

(f)

$$
\begin{aligned}
-3 x^{2}+5 x-1=0 & \Rightarrow-3\left(x-\frac{5}{6}\right)^{2}+\frac{13}{12}=0 \\
& \Rightarrow-3\left(x-\frac{5}{6}\right)^{2}=-\frac{13}{12} \\
& \Rightarrow\left(x-\frac{5}{6}\right)^{2}=\frac{13}{36} \\
& \Rightarrow x-\frac{5}{6}= \pm \frac{\sqrt{13}}{6} \\
& \Rightarrow x=\frac{5-\sqrt{13}}{6} \text { or } x=\frac{5+\sqrt{13}}{6} .
\end{aligned}
$$

(g)

$$
\begin{aligned}
\frac{1}{3} x^{2}-\frac{1}{4} x-\frac{2}{3}=0 & \Rightarrow \frac{1}{3}\left(x-\frac{3}{8}\right)^{2}-\frac{137}{192}=0 \\
& \Rightarrow \frac{1}{3}\left(x-\frac{3}{8}\right)^{2}=\frac{137}{192} \\
& \Rightarrow\left(x-\frac{3}{8}\right)^{2}=\frac{137}{64} \\
& \Rightarrow x-\frac{3}{8}= \pm \frac{\sqrt{137}}{8} \\
& \Rightarrow x=\frac{3-\sqrt{137}}{8} \text { or } x=\frac{3+\sqrt{137}}{8}
\end{aligned}
$$

(h)

$$
\begin{aligned}
-\frac{3}{4} x^{2}+2 x-\frac{1}{5}=0 & \Rightarrow-\frac{3}{4}\left(x-\frac{4}{3}\right)^{2}+\frac{17}{15}=0 \\
& \Rightarrow-\frac{3}{4}\left(x-\frac{4}{3}\right)^{2}=-\frac{17}{15} \\
& \Rightarrow\left(x-\frac{4}{3}\right)^{2}=\frac{68}{45} \\
& \Rightarrow x-\frac{4}{3}= \pm \frac{\sqrt{68}}{\sqrt{45}} \\
& \Rightarrow x=\frac{4}{3} \pm \frac{\sqrt{68}}{\sqrt{45}} \\
& \Rightarrow x=\frac{20}{15} \pm \frac{\sqrt{340}}{15} \\
& \Rightarrow x=\frac{20}{15} \pm \frac{2 \sqrt{85}}{15} \\
& \Rightarrow x=\frac{20-2 \sqrt{85}}{15} \text { or } x=\frac{20+2 \sqrt{85}}{15} .
\end{aligned}
$$

Note that in this case the answer $x=\frac{4}{3} \pm \frac{\sqrt{68}}{\sqrt{45}}$ would be fine.
The 'tidying up' is a bit tricky!
3. (a) In this case $a=1, b=1$ and $c=-1$.

Hence the solutions of the equation are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1 \pm \sqrt{1^{2}-4(1)(-1)}}{2(1)}=\frac{-1 \pm \sqrt{1+4}}{2}=\frac{-1 \pm \sqrt{5}}{2} .
$$

(b) In this case $a=1, b=-1$ and $c=1$.

Hence the solutions of the equation are

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(1)}}{2(1)} \\
& =\frac{1 \pm \sqrt{1-4}}{2} \\
& =\frac{1 \pm \sqrt{-3}}{2} \\
& =\frac{1 \pm \sqrt{3} i}{2} .
\end{aligned}
$$

(c) In this case $a=-4, b=-1$ and $c=3$.

Hence the solutions of the equation are

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-1) \pm \sqrt{(-1)^{2}-4(-4)(3)}}{2(-4)} \\
& =\frac{1 \pm \sqrt{1+48}}{-8} \\
& =\frac{1 \pm \sqrt{49}}{-8} \\
& =\frac{1 \pm 7}{-8} \\
& =\frac{3}{4} \text { or }-1 .
\end{aligned}
$$

(d) In this case $a=1, b=0$ and $c=1$.

Hence the solutions of the equation are

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-0 \pm \sqrt{0^{2}-4(1)(1)}}{2(1)} \\
& =\frac{ \pm \sqrt{-4}}{2} \\
& =\frac{ \pm \sqrt{4} i}{2} \\
& =\frac{ \pm 2 i}{2} \\
& = \pm i .
\end{aligned}
$$

(e) In this case $a=-3, b=4$ and $c=0$.

Hence the solutions of the equation are

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-4 \pm \sqrt{4^{2}-4(-3)(0)}}{2(-3)} \\
& =\frac{-4 \pm \sqrt{16}}{-6} \\
& =\frac{-4 \pm 4}{-6} \\
& =\frac{4}{3} \text { or } 0 .
\end{aligned}
$$

(f) In this case $a=\frac{1}{5}, b=-\frac{1}{4}$ and $c=\frac{1}{3}$.

Hence the solutions of the equation are

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-\left(-\frac{1}{4}\right) \pm \sqrt{\left(-\frac{1}{4}\right)^{2}-4\left(\frac{1}{5}\right)\left(\frac{1}{3}\right)}}{2\left(\frac{1}{5}\right)} \\
& =\frac{\frac{1}{4} \pm \sqrt{\frac{1}{16}-\frac{4}{15}}}{2 / 5} \\
& =\frac{\frac{1}{4} \pm \sqrt{-\frac{49}{240}}}{2 / 5} \\
& =\frac{\frac{1}{4} \pm \sqrt{\frac{49}{240}} i}{2 / 5} \\
& =\frac{\frac{1}{4} \pm \frac{7}{\sqrt{240}} i}{2 / 5} \\
& =\frac{\frac{1}{4} \pm \frac{7 \sqrt{15}}{60} i}{2 / 5} \\
& =\frac{5}{8}+\frac{7 \sqrt{15}}{24} i \\
& =\frac{15 \pm 7 \sqrt{15} i}{24} .
\end{aligned}
$$

(g) In this case $a=1, b=4$ and $c=4$.

Hence the solution of the equation is

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-4 \pm \sqrt{4^{2}-4(1)(4)}}{2(1)} \\
& =\frac{-4 \pm \sqrt{0}}{2} \\
& =\frac{-4}{2} \\
& =-2 .
\end{aligned}
$$

4. (a) From Question 3a we know that the graph cuts the x-axis when $x=\frac{-1-\sqrt{5}}{2}$ and when $x=\frac{-1+\sqrt{5}}{2}$.
Next, when $x=0, y=-1$, so the graph cuts the y-axis when $y=-1$.
We also know the graph is U-shaped since $a>0$.
Finally, the turning point is given by

$$
\left(-\frac{b}{2 a},-\frac{b^{2}-4 a c}{4 a}\right)=\left(-\frac{1}{2(1)},-\frac{1^{2}-4(1)(-1)}{4(1)}\right)=\left(-\frac{1}{2},-\frac{5}{4}\right) .
$$

We now have all the information we need and I have sketched the graph in Figure 1a below.
(b) From Question 3b we know that the graph does not cut the x-axis since the solutions of the equation $y=x^{2}-x+1=0$ are complex.
Next, when $x=0, y=1$, so the graph cuts the y-axis when $y=1$.
We also know the graph is U-shaped since $a>0$.
Finally, the turning point is given by

$$
\left(-\frac{b}{2 a},-\frac{b^{2}-4 a c}{4 a}\right)=\left(-\frac{-1}{2(1)},-\frac{(-1)^{2}-4(1)(1)}{4(1)}\right)=\left(\frac{1}{2}, \frac{3}{4}\right) .
$$

We now have all the information we need and I have sketched the graph in Figure 1b.
(c) From Question 3c we know that the graph cuts the x-axis when $x=\frac{3}{4}$ and $x=-1$.
Next, when $x=0, y=3$, so the graph cuts the y-axis when $y=3$.
We also know the graph is shaped like an upside down U since $a<0$.
Finally, the turning point is given by

$$
\left(-\frac{b}{2 a},-\frac{b^{2}-4 a c}{4 a}\right)=\left(-\frac{-1}{2(-4)},-\frac{(-1)^{2}-4(-4)(3)}{4(-4)}\right)=\left(-\frac{1}{8}, \frac{49}{16}\right) .
$$

We now have all the information we need and I have sketched the graph in Figure 2a below.

(a) A sketch of the graph of the function $y=x^{2}+x-1$.

(b) A sketch of the graph of the function $y=x^{2}-x+1$.

Figure 1
(d) From Question 3d we know that the graph does not cut the x-axis since the solutions of the equation $y=x^{2}+1=0$ are complex.
Next, when $x=0, y=1$, so the graph cuts the y-axis when $y=1$.
We also know the graph is U-shaped since $a>0$.
Finally, the turning point is given by

$$
\left(-\frac{b}{2 a},-\frac{b^{2}-4 a c}{4 a}\right)=\left(-\frac{0}{2(1)},-\frac{0^{2}-4(1)(1)}{4(1)}\right)=(0,1) .
$$

We now have all the information we need and I have sketched the graph in Figure 2b.

(a) A sketch of the graph of the function $y=-4 x^{2}-x+3$.

(b) A sketch of the graph of the function $y=x^{2}+1$.

Figure 2
(e) From Question 3e we know that the graph cuts the x-axis when $x=\frac{4}{3}$ and $x=0$.
Next, when $x=0, y=0$, so the graph cuts the y-axis when $y=0$ (note that we already know this since one of the x-intercepts occurs when $x=0$).

We also know the graph is shaped like an upside down U since $a<0$.
Finally, the turning point is given by

$$
\left(-\frac{b}{2 a},-\frac{b^{2}-4 a c}{4 a}\right)=\left(-\frac{4}{2(-3)},-\frac{4^{2}-4(-3)(0)}{4(-3)}\right)=\left(\frac{2}{3}, \frac{4}{3}\right) .
$$

We now have all the information we need and I have sketched the graph in Figure 3a below.
(f) From Question 3f we know that the graph does not cut the x-axis since the solutions of the equation $y=\frac{1}{5} x^{2}-\frac{1}{4} x+\frac{1}{3}=0$ are complex.
Next, when $x=0, y=\frac{1}{3}$, so the graph cuts the y-axis when $y=\frac{1}{3}$.
We also know the graph is U-shaped since $a>0$.
Finally, the turning point is given by

$$
\left(-\frac{b}{2 a},-\frac{b^{2}-4 a c}{4 a}\right)=\left(-\frac{-\frac{1}{4}}{2\left(\frac{1}{5}\right)},-\frac{\left(-\frac{1}{4}\right)^{2}-4\left(\frac{1}{5}\right)\left(\frac{1}{3}\right)}{4\left(\frac{1}{5}\right)}\right)=\left(\frac{5}{8}, \frac{49}{192}\right) .
$$

We now have all the information we need and I have sketched the graph in Figure 3b.

(a) A sketch of the graph of the function $y=-3 x^{2}+4 x$.

(b) A sketch of the graph of the function $y=\frac{1}{5} x^{2}-\frac{1}{4} x+\frac{1}{3}$.

Figure 3
(g) From Question 3g we know that the graph touches the x-axis when $x=-2$.
Next, when $x=0, y=4$, so the graph cuts the y-axis when $y=4$. We also know the graph is Ushaped since $a>0$.
Finally, the turning point is given by

$$
\begin{aligned}
\left(-\frac{b}{2 a}\right. & \left.,-\frac{b^{2}-4 a c}{4 a}\right) \\
& =\left(-\frac{4}{2(1)},-\frac{4^{2}-4(1)(4)}{4(1)}\right) \\
& =(-2,0) .
\end{aligned}
$$

Figure 4: A sketch of the graph of the function $y=x^{2}+4 x+4$.

We now have all the information we need and I have sketched the graph in Figure 4.
Note that if the graph just touches the x-axis then the turning point will always be at this point.
5. In each of these questions we will use the solutions to Question 3. If there is a factorization then we will change the signs of the solutions and also multiply by the coefficient of x^{2} if it is not 1 .
(a) $x^{2}+x-1=\left(x-\frac{-1-\sqrt{5}}{2}\right)\left(x-\frac{-1+\sqrt{5}}{2}\right)$.

You could also write this as $\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)$ but this is not necessary.
(b) The solutions in Question 3b are complex, so we say in this course that $x^{2}-x+1$ can't be factorized. Note that in certain courses, complex factorizations may be allowed.
(c) $-4 x^{2}-x+3=-4\left(x-\frac{3}{4}\right)(x-(-1))=(-4 x+3)(x+1)$.

Here I multiplied the -4 by the first bracket since it got rid of the fraction.
(d) $x^{2}+1$ can't be factorized since the solutions in Question 3d are complex.
(e) $-3 x^{2}+4 x=-3(x-0)\left(x-\frac{4}{3}\right)=x(-3 x+4)$.

Here I multiplied the second term by -3 to get rid of the fraction.
(f) $\frac{1}{5} x^{2}-\frac{1}{4} x+\frac{1}{3}$ can't be factorized since the solutions in Question 3 f are complex.
(g) $x^{2}+4 x+4=(x-(-2))(x-(-2))=(x+2)(x+2)$.

Note that if there is a single solution then we have to use it twice.
6. (a) $x^{2}+5 x+4=(x+1)(x+4)$.
(b) $x^{2}-5 x+6=(x-2)(x-3)$.
(c) $x^{2}-4 x=x(x-4)$.
(d) $x^{2}-4=(x-2)(x+2)$.
(e) $x^{2}+x-12=(x-3)(x+4)$.

